Как сделать из бумаги многогранник. Многогранники из бумаги — схемы

Юный техник — для умелых рук 1986-12, страница 15

Секреты мастерства 3ВG3ДЧЯТЫв

МНОГОГРАННИКИ

Приглашаем вас на необычный урок геометрии, где вы научитесь построению звездчатых многогранников. В основе их лежат строгие математические закономерности.

Изготовив хотя бы одну такую звезду, вам, наверное, захочется «открыть» и другие. Своим разнообразием эти геометрические фигуры напоминают фантастические звезды, планеты, астероиды. Причем среди них, вероятно, есть и такие, которые еще никому не удавалось рассчитать и построить. Может, это Сделаете вы? Только начинать работу надо с азов.

Познакомившись с техникой изготовления простых звездчатых многогранников, вы сможете украсить рукотворными звездами актовый зал школы для новогоднего бала, свою комнату, елку. А почему бы не подарить такую звездочку ветерану, другу, не устроить выставку, где вы посоревнуетесь с друзьями в фантазии?

С глубокой древности математикам были известны пять выпуклых многогранников, которые называют Платоновыми телами. Это известные, наверное, каждому школьнику тетраэдр, гексаэдр, октаэдр, икосаэдр, додекаэдр. Этим фигурам в древности приписывали магические свойстза, они олицетворяли землю, воздух, воду, солнце, космос. Их только пять, больше при всем желании не придумаешь.

Каждая из этих фигур образована одинаковыми равносторонними многоугольниками: треугольниками, квадратами, пятиугольниками. Они и являются основой для построения любых звездчатых многогранников.

На рисунках 1—5 изображены пять простых многогранников: тетраэдр, гексаэдр, октаэдр, икосаэдр, додекаэдр. Здесь же даны чертежи их граней и возможные варианты разверток для их склейки. Такие грани довольно просто построить, зная основы геометрии.

Элементы для построения звездчатых фигур в основном такие же, только здесь каждая звезда может состоять и из разных граней (см. стр. 16).

Читайте также:  Как сделать бумеранг из бумаги который возвращается

Например, фигуры 6, 7, 8 составлены из одинаковых граней, а вот фигуры 9 и 10 — из двух видов граней. Из нескольких граней можно склеить заготовку для одной из вершин звезды, а после соединить их. Чаще всего грани образованы треугольниками либо квадратами. Сложнее форма граней, показанных на рисунках 8, 9, 10.

По приведенным здесь разверткам получится одна из вершин звезды. Остальные делаются так же.

У звезд 6, 7 и 8 все грани для одной заготовки одинаковы. У звезд 9 и 10 по две формы заготовок и, естественно, две формы вершин.

При изготовлении звезд по рисункам 9 и 10 вы убедитесь, что они получаются из взаимного пересечения двух видов более простых звезд. Так, звезда на рисунке 9 составлена из звезд 6 и 7; а звезда на рисунке 10 — из звезд 7 и 8-

Для изготовления звезд лучше всего применять тонкий цветной картон, наборы которого продаются в магазинах канцтоваров. Можно использовать плотную ватманскую бумагу, отходы от упаковок из картона. Для склеивания применяйте клей ПВА.

Из инструментов вам понадобятся: металлическая линейка, остро заточенный твердый карандаш, шило, чертилка или запиленный под шило гвоздь, вставленный в цанговый карандаш, кисть или тонкая вязальная спица для нанесения клея, ножницы прямые с острыми концами, большие и маленькие, и подкладка из картона, на которой вы будете работать.

Из плотной бумаги или картона сначала изготовьте шаблон одной грани, а лучше — заготовки целиком. С приведенных на наших рисунках разверток переколите их контуры. На изнаночной стороне картона соедините метки карандашом, а потом проведите по полученным линиям кончиком шила.

У каждой заготовки оставьте припуск (клапан) для склейки заготовок по ребрам. Согните заготовки по линиям сгиба на лицо, используя линейку.

Изготовиз полный комплект заготовок, приступайте к склейке вершин. Сначала нужно склеить каждую вершину отдельно. Клей наносится на края граней и на оставленный клапан, детали плотно прижимаются друг к другу до высыхания. После этого можно раскрасить одинаковые вершины. Причем у звезд 9 и 10 вершины разной формы должны быть разного цвета.

Для окончательной сборки звезды осталось склеить вершины друг с другом. При этом некоторые клапаны окажутся лишними, их обрезают. Клеить надо так, чтобы все клапаны оказались внутри. Если развертка выкроена правильно, каждая вершина точно встает на свое место. Трудно бывает приклеить последнюю вершину, но подумав, вы найдете выход из положения.

На этом можно было бы и закончите статью. Но все-таки хочется не ограничиваться рекомендациями, с которыми вы познакомились выше. Попробуйте придумать свою звезду! Какой она получится, посмотрим. Ждем от вас сообщений.

А. БИРЮКОВ, г. Курск Рисунки М. СИМАКОВА

15

Видео. Вращение всех правильных многогранников

Популярное

Подарок школьнику за 150 рублей Найти подарок для школьника, который будет интересным, полезным, а также не разорит семейный бюджет – возможно ли такое в 2021 году? Рассказываем, чем можно…

Люстра из многогранника

Подвесной потолочный светильник или по-простому – люстра, ещё никогда не был так близок к точным математическим формам.

Многогранники для Новогодней сказки

Сделать новогодний праздник красивым и необычным, чтобы дети видели в нём сказку, а гости восхищались, можно только своими руками. Бумажные многогранники –…

Почему бумага может быть такой прочной?

Почему бумага? Иногда приходится слышать вопрос: «Почему вы выбрали для сборки многогранников такой материал как бумага (или точнее дизайнерский картон)? Это же…

История фигур

Древняя математическая наука уходит своими корнями в далекое прошлое, во времена процветания Древнего Рима и Греции. Тогда было принято связывать технические аспекты с философскими. Поэтому, согласно учению Платона (один из древнегреческих мыслителей), каждый из многогранников, состоящих из определенного количества одинаковых плоскостей, символизирует одну стихию. Фигуры из треугольников — октаэдр, икосаэдр и тетраэдр — ассоциируются с воздухом, водой и огнем соответственно и могут преобразовываться друг в друга благодаря однотипности граней, каждая из которых имеет три вершины. Землю же символизирует гексаэдр из квадратов. А додекаэдр, благодаря особенным пятиугольным граням, выполняет декоративную роль и является прототипом гармонии и мира.

Также известно, что один из греческих математиков, Евклид, доказал в своем учении «Начала» неповторимость упомянутых платоновых тел и их свойство «вписываться» в сферу (фото 2). Сделан показанный из бумаги многогранник путем сворачивания сомкнутых между собой двадцати равнобедренных треугольников. Схема наглядно демонстрирует выкройку для изготовления фигуры. Рассмотрим подробнее все этапы работы по созданию икосаэдра.

Читайте также:  Как сделать куб из бумаги или картона: схема с фото и видео

Схемы и фигуры игры танграм

В последнее время танграм частенько используют дизайнеры. Самое удачное применение танграма, пожалуй, в качестве мебели. Есть и столы-танграмы, и трансформируемая мягкая мебель, и корпусная мебель. Вся мебель, построенная по принципу танграма, довольно удобна и функциональна. Она может видоизменятся в зависимости от настроения и желания хозяина. Сколько всевозможных вариантов и комбинаций можно составить из треугольных, квадратных и четырехугольных полок. При покупке такой мебели вместе с инструкцией покупателю выдаются несколько листов с картинками на разные темы, которые можно сложить из этих полок. В гостиной можно повесить полки в виде людей, в детской из этих же полок можно сложить котов, зайцев и птиц, а в столовой или библиотеке — рисунок может быть на строительную тему — дома, замки, храмы.

Вот такой многофункциональный танграм.

Математические характеристики додекаэдра

Додекаэдр может быть помещен в сферу (вписан), так, что каждая из его вершин будет касаться внутренней стенки сферы.

Радиус описанной сферы додекаэдра

где a – длина стороны.

Сфера может быть вписана внутрь додекаэдра.

Радиус вписанной сферы додекаэдра

ploshchad-poverhnosti-dodekaedra.jpg

Площадь поверхности додекаэдра.

Для наглядности площадь поверхности додекаэдра можно представить в виде площади развёртки.

Площадь поверхности можно определить как площадь одной из сторон додекаэдра (это площадь правильного пятиугольника) умноженной на 12. Либо воспользоваться формулой:

Объем додекаэдра определяется по следующей формуле:

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий